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A factored ADI finite-difference scheme has been developed for solution of the two dimen- 
sional incompressible Navier-Stokes equations by the artificial compressibility method. The 
scheme employs primitive variables with central differencing on a staggered grid. The resulting 
close coupling between pressure and velocity produces enhanced stability and eliminates the 
need for artificial damping. A spatially variable time step based on a fixed Courant number is 
used to improve computational efficiency. Numerical results have been obtained for flows in a 
straight channel, a curved rotating channel, and a driven cavity. In the latter case at Reynolds 
number of 10,000 with local cell Reynolds numbers as high as 100, a solution on a 40x40 
stretched grid shows no spatial oscillations in the flow variables. 0 1987 Academic Press, Inc. 

1. INTRODUCTION 

The purpose of this study is to obtain solutions of steady, incompressible, inter- 
nal fluid flow using a time-marching calculation of the Navier-Stokes equations. 
Unlike the compressible flow case, the continuity equation for incompressible flow 
has no explicit time derivative terms; the constraint “V. II = 0” must be satisfied at 
any time t, which makes solving the incompressible momentum equations for either 
viscous or inviscid flow difficult if a standard time-marching solution method is 
used. 

Taking a curl of the momentum equations gives the vorticity transport equations 
with the pressure eliminated. This formulation requires the use of the vorticity 
boundary conditions, which are difficult to implement, especially in three dimen- 
sions. Furthermore, the pressure is not obtained directly so that additional 
calculation is needed. Because of these difhculties, it is advantageous and more 
straightforward to use the primitive variables, say velocity u and pressure p, as the 
dependent variables. The primitive variable formulation is also more accurate on 
the boundaries. 

Harlow and Welch [l] have developed a method of solving the two dimensional 
unsteady Navier-Stokes equations by employing the Poisson equation for the 
pressure in such a way that the continuity equation is satisfied at each time step. 
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ihiams [2] followed a similar procedure in the cal~~lat~o~ of a t 
ral convection problem with the Fast Fourier transform technique as a 
son equation solver for the pressure. Chorin [3] pro 

which avoids solving the Poisson equation directly by intr 
step in which the flow velocities are first obtaine y sslving the momentum 
equations with the pressure gradients omitted. Then in order to obtain a 
free velocity field, the velocities are corrected successively by the pressur 

wing time step until the continuity equation is satisfied. A variation of 
of reference [3] known as the velocity-pressure metho 
with many different finite-difference schemes. 

If the goal is to obtain the steady solution only, any of these methods are com- 
mutationally wasteful. Chorin [7] and Temam IS] introduced an effective way to 
overcome the difftculty inherent in the constraint, “87. = 0,” by adding a thx 
derivative of the pressure to the continuity equation. This term is mult 
“‘artificial compressibility” coefficient. The method has 

eat transfer problems in both two and three space 
numerical analysis also has been done extensively [12-141. An excellent survey of 
this work has been made by Peyret and Taylor [Is], 

The present study presents a central-difference numerical scheme coupled w;th 
e velocity and pressure without adding artificial damping terms. In Section 2 we 
scuss a numerical scheme based on the artificial ~~m~ress~bi~~ty method along 

with the boundary conditions and the choice of the artificial ~orn~ressibi~~ty coef- 
ficient and tbe time step. Section 3 provides numerical r 
for channel flows and a driven cavity flow at very large 
there are no oscillations in the flow variables 
difference numerical scheme. 

2. FORMULATION OF THE PRO 

2.1. ~~t~~~at~~al Formulation 

The Navier-Stokes equations with artificial ~~m~ressibi~ity can be writte 
dimensionless form as 

o’u dr+v+m)= -vp+ 

(2.2) 

where 6 and Re are the artificial compressibility coefficient and the 
ber, respectively. The divergence free constraint on the velocity has been replac 

me evolution equation for the pressure, which implies (2.1) and (2.2) can 
by existing numerical methods for real compressible flow problems. The 
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major advantage of using the system (2.1) and (2.2) is that no iteration is needed to 
satisfy “V. u = 0” at each time step. System (2.1) and (2.2) has no physical meaning 
until steady state is reached. 

Introducing the artificial compressibility term, Mp/at, into the continuity 
equation, in the inviscid limit, results in a system of hyperbolic partial differential 
equations that gives rise to an artificial wave speed. As an example, let us consider 
the inviscid one dimensional version of (2.1) and (2.2) as follows: 

(2.3) 

The eigenvalues of the square matrix of (2.3) are u k (u’ + 1/6)li2, which are real 
and distinct, therefore (2.3) is hyperbolic. Furthermore, the eigenvalues are opposite 
in sign; in other words, the flow field described by using artificial compressibility is 
subsonic for any positive values of 6. This guarantees that there will be no discon- 
tinuity, such as a shock in the solution, therefore, 6 may be chosen to produce the 
fastest convergence to the steady state. 

2.2. Numerical Formulation 

In discussing finite-difference formulations of the system (2.1) and (2.2) we will 
restrict ourselves to a two dimensional analysis in a Cartesian coordinate system, 
which can be readily extended to three dimensional flows. The factored implicit 
method of Douglas and Gunn [16] has been employed for compressible flows by 
Beam and Warming [17] and Briley and McDonald [18]. The present finite-dif- 
ference scheme uses a similar technique for incompressible flows using a staggered 
grid system. In this grid system scalar quantities (e.g., pressure in this analysis) are 
located at the centers of their cells and the velocity components in the X- and 
v-directions, u and U, are stored at different positions on the boundaries of the 
bressure cell, as is shown in Fig. 1. 

Equations (2.1) and (2.2) can be written as 

where 

> A,= 

(2.4) 

N 0 0 

a 
0 N 

5 
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/ U IS GIVEN HERE 

"i 'V IS GIVEN HERE 
P IS GIVEN HE% hS (Xl)-"1 

1 

FIG. 1. Staggered grid system and boundary conditions. u, u-velocity; v, c-velocity; , pressure; 
-~--, u-; , c-; -, p-cell. 

here $ = u or v. Introducing an intermediate step, denoted by *? and ap~~~ximati~g 
the convective terms with the values at the present time n AI, we can advance (2.4) 
in time as follows: 

We may consider the first and second expressions of (2.59 as a prediction an 
correction step, respectively. The convection terms in N are discretized in the inter- 
mediate step, denoted by *, as 

; (al) = 

(V:)n(Uij+Uij+1)*/2-(V;)“(Uiji-Uii-t)*/2 

AY 

where v,‘=(v,+vj+,)/2j V,=(Vii--l+U,ili--1)/2, fI,‘=(V~+Uq+1)/2, a 

vL: = (vu + uti- l)/2, which represent the v-velocities on the upper and lower ‘no 
daries of the U- and u-cells, respectively. For the correction step, denoted 
superscript YI + 1, the convective terms in A4 are drscretized as 
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g (uu) = 
(U:y(qj+Uj+J+ l/2- (u;)“(v,+ vi- y)n+‘/2 

Ax 

g (uu) = 
(U,‘)~f(Ujj+u;+,)‘~+‘/2-(u,)‘pf,+u~~,j)n+’/2 

Ax 

where u+ = (Uq+ Ug+ ,)/2, U, =(ui-~~+tU,-~~j+1)/2, U+ = (2lv-b u;+,)/& and 
u; = (uij 4 Ui- ,)/2, which are the u-velocities on the right \nd left side boundaries 
of the U- and u-cells, respectively. 

Obviously, the converged solution of (2.5) is a steady-state solution of (2.4). 
System (2.5) can be rewritten in a simpler “delta form” as 

(I + At A;) A4* = - At(A”, + A;) 4” (2.6) 

(I+A~A~)AI$“+‘=A~* (2.7) 

where A@*=$*-$“, A$nc’=(b”+l-$“, and I is the identity matrix. Finally, (2.6) 
and (2.7) can be combined to yield 

(I + At(A; + A”,) + At* A;A;) A@n+ I = - At(A; + A;) I$“. (2.8) 

Let us call the calculation procedure of (2.6) the y-sweep, and (2.7) the x-sweep, 
and express them in central spatial difference form. Then in the staggered grid 
system: 

For the y-sweep: 

-~~;--Ir)du:~,+(l+~(u~-u;)+2t~)Au$+(~v~-t~)Au~+~=(Ru), 

(2.9) 

* 

(2.10) 

where t, = AtlAy, tb = At/(Re Ay2). (Ru),- and (Ru),, are the central-difference 
expressions of the x, y components of At(Re-’ V2u - Vp - V ’ (uu))” at the U- and 
u-cells, respectively, and (RP)~ is the two-point central-difference formulation of 
- At(V . u)“/b at the p-cell. As shown above, in the y-sweep Au* is decoupled from 
the pressure and treated as a scalar, whereas Au* and Ap* are coupled to yield a 
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2 x 2 block tridiagonal matrix, Also, note from (2.10) that @/6) for the U- 
l~rn and av/dy for the continuity equation are approximated by two- 
difference relations. 

For the x-sweep: 

f, 
n+1 

-tit,- 
2 

-t; 0 ++u: - u; ) + 2t; - t, 

+ 
t 

-_r 
t 

6 
0 

I lj 
d 

1 

-~ 1, 

where t, = At/Ax, t: = At/(Re Ax’). In the x-sweep, AU”+ r becomes decoupled from 
the pressure while Au”+ ’ and Apn” form a 2 x 2 block matrix. Also 8pl~3.x in t 
u-momentum and au/ax in the continuity equation again have two-point central- 
difference approximations. 

The velocity and pressure coupling in the x- and y-sweeps is illustrated in Fig. I. 
The details in the finite-difference expressions of (Ru),, ( v)~, (IQ), and others are 
shown in the Appendix. 

2.3. ~~~nd~~~ Conditions 

I[n the staggered grid arrangements the pressure boundary con 
required on the physical boundary, which is a solid wall in this wor 
flow problems, such as a channel flow, no-slip conditions are imposed cn the soh 
boundaries. For the inlet and exit let us examine the behavior of the characteristics 
of the inviscid equations of motion as 

Since the characteristics of the first square matrix are U, u + (u’ + I/S)““, two ri 
running waves at the inlet and one left running wave at the exit prop 
computational domain. Therefore, two boundary conditions are im 
inlet, and only one at the exit. In this work we specify the velocities, u and 0, at the 
inlet and the pressure at the exit, as shown in Fig. 1. 
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2.4. Choice of Art@cial Compressibility and Time Step 

To have some idea how to choose the artificial compressibility coefficient, 6, we 
take the linear combination of the first and second square matrices of (2.13), which 
are denoted by C, and C,, as 

D=a,C,+a,C, (2.14) 

where al and a2 are numbers chosen to be cos 8 and sin 13; here B is any value of 
angle. The matrix D can be diagonalized to yield the eigenvalues, 1’s as 

a = c, ci Cc” + (a: + c&p]“*, a:+@;=1 (2.15) 

where c = a, u + a2 v. If a local impulsive plane perturbation front is introduced to 
the solution of (2.13), plane waves propagate with velocities of i’s in a direction 
perpendicular to the perturbation front; then 19 is the angle between the x-axis and 
this direction (see p. 6, Ref. [19]). We choose 6 in such a way that the magnitudes 
of the eigenvalues are of the same order as 

c-c+(c*+1/~)1’2 and c - Ic - (c” + l/S)‘/‘\. 

From the second expression above we have 6 N 1/3c2. In this case the ratio of the 
largest eigenvalue to the smallest one is only about 3. In the present work we take 6 
as 

&A- 
3q2 (2.16) 

where q, which is u* + v *, is some representative flow speed. For the optimum value 
of 6 a physical understanding or qualitative estimation of the flow field under con- 
sideration and numerical experiments are needed. 

For the choice of an appropriate time step, At, let us consider the linearized 
inviscid equations in a non-conservative form as 

;+(“,.v)“= -VP, e+v II=0 at ’ 

where uO is the local velocity with (u,, vO) in the x and y directions, respectively, 
and it is assumed constant. After discretizing (2.17) in the central-difference form 
for the staggered grid we replace (u, v,p) by their Fourier components 
(U, V, P) exp(ik * x), where i= &- 1, k is the wave number with components 
(k,, kY) and x is the position vector. Then we have from the present scheme 
described in (2.8) 

G = (I + At@, + d,) + At* &&)-‘(I + At’;i,;i,) 

(2.18) 
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iv, sin j 
0 

AY 

iv,sinb e’“-1 
0 -- 

AY AY 
1 -e-iP 

0 - 
6 AY 

0 

iu, sin a 
AX 

iu, sin 01 
0 ___ 

Ax 

1 -e-ia 

6Ax 
0 

and M = k, Ax, p = k, Ay. For the purpose of estimating the time step we assume 
that the At2 term in (2.18) is much smaller than the At term so that the 
amplification matrix can be approximated as 

G = [I -f At& + A,)] -I. 

Then, the eigenvalues of G for the inviscid equations become 

where = uO sin a/Ax f vO sin p/Ay. For a minimum 111, it may be a proper choice 
if we take the following value of the Courant number, Cr, defined as 

to be as large as possible. This suggests that a spatially variable time step be use 
for a fixed Cr. 

3. EXAMPLES OF CALCULATIONS 

As example problems, fluid flow through a straight channel, a rotating passage, 
and a driven-cavity flow are presented. Two examples of the tbrQugh-how have 
many practical applications. Computationally, they are good examples of the 
application of in- and out-flow boundary conditions. The flow in the xotatin 
passage example is of interest in the present two-dimensional study since 
variables are the functions of two independent space variables even thou 
are three velocity components. Finally, the driven-cavity flow example is t 
a problem with no preferred flow direction Furthermore, this exam 
problem of a recirculating flow in a confined region. The bounda 
this problem is well defined, and is the only specified velocity on t 
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3.1, Fluid Flow in a Straight Channel 

Because of the symmetry of the flow, calculations have been performed in half of 
the flow domain, between the lower wall, y = 0, and the center line, y = H/2, where 
His the channel width. The Reynolds number is defined as Re = UH/v, where U is 
the uniform inlet velocity and v the kinematic viscosity. At the inlet u and v are set 
to unity and zero, respectively, and the pressure is allowed to vary. On the wall 
u = v = 0, and along the center line dzq’dy = u = 0. At the exit u and u are linearly 

b 

FIG. 2. Convergence rate of rms of V. u for Re = 150 with a 60 x 10 grid. (a) Against Cr at 6 = 0.4. 
(b) Against 6 at Cr = 20. 
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UC 

IH 2H 3H 4H x 

FIG. 3. The u-velocity along a center line of the channel at Re = 150. C, numerical solution 1231; 
, numerical soiution interpolated from Re = 50, 100, and 200 1201; -.-, I-term downstream expansion 

[22]; P-P) 2-term upstream expansion [21]; -, present result. 

extrapolated rn order to calculate their momentum 
in the x-direction and p is given for the calculation 

tions at the very end cells 
~-m~rne~t~rn equation as 

(3.1) 

where subscripts w and e denote the wall and exit, respectively. It is necessary tap 173~ 
the pressure level, therefore, (p,), is set to zero. 

Figure 2a shows the convergence histories of the rms (root-mead-square) of 
for various values of Cr. It is noted that fast convergence is obtained at a 
Cr = 20 for a fixed 6, 0.4 in this case. A uniform grid with Ay/Ax = 0.5 and Cr = 
have been used throughout the computations of this exa e. The rate of c 
vergence is plotted in Fig. 2b for different values of 6 at Cr . Taking a represen- 
tative flow speed to be 1.5 (fully developed maximum velocity) 0.75 (half of the 
maximum speed), by (2.16) we may guess the optimum ge of 6 to be 
0.148 - 0.592. Fast convergence is obtained when 6 is taken to be about 0.4; slower 
convergences are observed if 6 deviates from 0.4. 

It is assumed that the steady state is reached if the maximum value of divergence 
of the velocity, max(V. u), is less than 5 x lo-‘. To obtain the steady solution for 

e = 150, 105 time steps (18 seconds of CPU time) are needed using a 60 x 10 
he difference in the flow rates between the inlet and outlet is 0.006% of the 

Wow rate and the rms of V. IJ converges down to 1.4 x 10p5. As shown in Fig. 3, the 

1 .2 .3 .4 .5 .6 .7’ .6 .9 1 1.2 1.5 2 2.5 3 4 5 fi 7 a 9 ?OH -+x 

FIG. 4. Development of u-velocity along x for Re = 1000 
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present values of u along the center line agree very well with those of Gillis and 
Brandt [20] for the entire flow region and also with those of Van Dyke [21] in the 
very inlet region. Figure 4 shows the flow development for Re = 1000. The 100 x 10 
grid, which extends the computational domain up to 10H in the x-direction, was 
used taking 6 = 0.4. The convergence criterion is the same as the case with 
Re = 150; 175 time steps, which requires 50 seconds CPU time, are needed for the 
steady state, yielding an rms of V-u of 5.6 x lop6 and an error in the flow rates 
between the downstream distance 

of 10H is not sufficient for a fully developed flow, and there still exists a potential 
core with a maximum velocity u = 1.303. 

3.2. Flow in a Rotating Passage 

Flow in a rotating passage is considered for the geometry shown in the inset of 
Fig. 5, in which a curved passage without blades is under rotation about the X-axis 
with an angular velocity 0’. Let us define a reduced pressure, p”, as 

:-: STATIONARY 

x-y plane 

FIG. 5. Orthogonal curvilinear coordinate system. 
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where r’ is the displacement from the X-axis, p’ the static pressure, and p t 
sity. If we non-dimensionalize r’, u’, t, and p” with, res ectively, the reference 
L (distance from the X-axis to the tip of the rotating part of the wheel 
study), the uniform inlet velocity U, L/U, and pU2, we have the Navie 
equations in the rotating frame as (2.1) and (2.2) with the Coriohs force term, 

in the left-hand side of the momentum on. Mere 
r again defined as UL/v, E = /co’/ L/U, relative 

X-axis, and i the unit vector in the X-direction. 
The cross-sectional flow area cut by a plane comprising the X-axis, 

called the x-y plane, is transformed into a corn~utat~~~al domain (tV q) 
numerical orthogonal mapping [24], which is shown in Fig. 5. The artificially com- 

ressible Navier-Stokes equations in a weak conservative form are written fcr the 
~rtbQgo~a~ coordinate system as 

1 ah, du, 
+ h:hm ax,, ax, 

1 ah, au, 1 -__-_- 
h,h; ax, ax, i ---h:hrn \ 

+ 
1 ah, ah, 2 ah, ah, -~- --~-- 

h,h;ax, ax, +J+w%axm 

i ah, ah, ~__ u 
h2h2 ax ax IT3 I m m I i 

(subscripts I, m, n vary from 1 to 3, no sum on I) 

(3.2) 

Here (x,, x2, x3) and (u,, u2, u?) correspond to (5, g, 4) and (u, v, w), respectively, 
where 4 is the circumferential angle, and w is the relative velocity in that d~re~t~~~, 
hl = E(axja,.g’+ (ay/ag)2p2, h,= [(a.+#+ (ay/a#p2, ~,=JJ, J=hlh2h3, v2 
is the Laplacian operator, and C, is the Zth component of the Coriohs force (ie9 
2&i x u). 

We take E, 6, and Re to be 1, 0.3, and 1000, respectively. For the 
dent of 4 (i.e., a/&j = 0) there is no pressure term in the w-momen 
described in (3.2). Therefore, two different Courant numbers are 
calculations of the U-, v-, p-equations, and w-equation (which is decoupled from the 
modified continuity equation) setting A< = Ay = 1 by 

583i70!1-16 
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A uniform velocity (i.e., u = 1) is given at the inlet, and the pressure at the exit is 
given in the same manner as in (3.1). A 28 x 14 grid is used with Cr = 10 and 
Crw = 5. At time step 330, max(V. u) becomes 1.0 x 1O-4 with negligible error in 
the flow rates between the inlet and exit. Comparison of the results between the 
absolute frame calculation and the relative frame shows an insignificant difference 
in the flow variables. 

Figure 6 shows the development of the main and circumferential flows along the 
curved passage. It is noted that in the near entrance region the u-profile has the 
form of a potential vortex in such a way that u increases as q varies from the con- 
cave to convex surfaces. 

3.3. Driven Cavity Flow 

As a last example, fluid flow in a driven square cavity is considered for Re = 400 
to 10000. The Re is based on the constant velocity with which the upper wall, y = 1, 
is moving in the x-direction. Unlike a through-flow case, it is not easy to pick up a 

Frc.6. Left: Main flow velocity distributions along the channel. Right: Absolute circumferential 
velocity distribution. 
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representative speed, q, for the estimation of 6 using (2.16). For a flow with no 
preferred flow direction, like a recirculating flow, q depends highly on the Re and 
grid used. 

Figure 7a demonstrates the convergence rates against various 6 for Cr = 20 at 
Re = 400 using a 20 x 20 uniform grid. It can be observed that an optimum value of 
6 is about 3, which corresponds to q = 0.33. A severe deviation from it results in 
slow convergence, and eventually the solution diverges for large 6, 20 in this 
illustration. In Figure 7b the convergence histories are plotted against Cr for 
Re = 1000 with the 40 x 40 uniform grid for a fixed 6 of 1.3. For very large Cr, 100, 
for example, the present scheme yields very slow convergence or may not even con- 
verge to a satisfactory level. This indicates that the dt2 A,A, term in (2.8), which 
makes our system (2.8) inconsistent with the Navier-Stokes equations (2.4), has an 
adverse effect on our scheme for large Cr. Taking the Cr as about 20 is a good 
choice in this case. 

c Re=iOOO with grid stretching 

time steps 

FIG. 8. The convergence rate of the max (V * u) and maximum residuals of momentum equations. 0, 
max(V * II); 0, x, the maximum residuals of the U- and v-momentum equations, respectively. 



20 INCOMPRESSIBLE NAVIER-STOKES SOLUTION 247 

The max(V * u), maximum residuals of the U- and ~-momentum equations are 
shown in Fig. 8 for Re = 1000 and 10,000. Each quantity for Re = 1000 
rapidly with almost the same rate. For Re = 10,000 the convergence is slow 
oscillatory as well. It is noted that the maximum residual of the u-momen 
equation is much larger than the other quantities. 

The u-velocity profiles with y at the geometric center of the cavity (i.e., 
are presented in Fig. 9. The results for Re = 400 and 1000, which are obtain 
the 40 x 40 uniform grid, are shown in Fig. 9a and b. The agreement with 
al. [25] is excellent, especially for Re = 400, but it is noticeable in Fig. 9b that for a 
higher Re, say 1000, the present result deviates from theirs (se e maximum value 
of u near y = 0). This is probably due to the fact that at high viscous effects are 
concentrated very close to the walls; therefore, finer grid resolution is needed a 
increases. Although a dense uniform grid could be applied to the entire 
domain, it would increase computation time. An alternative way is to arra 
finer grid near the walls while keeping the total number of grid points uncha 
by stretching the coordinates using the transformation functions as 

Tan-‘[y(2(/11- l)] +Tan-’ y 
x= 

2Tan’y > Y= 
c3.4j 

where II and JJ are the numbers of grid points in the x and y directions, and ;, is a 
factor to control the grid. The Navier-Stokes equations in inate 
system are written in a conservative form in such a way that 
ponents are kept inside the derivatives. 

(fl (Cl lb1 

FIG. 9. The u-velocity profiles with y .0844  Tw (a )110.77ept that 
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TABLE I 

Run Conditions and Results for the Driven-Cavity Flow Using a 40 x 40 Grid 

Time CPU time 
Re Cr 6 y steps max(V * u) rms(V * II) (in set) Ymax umax 

4 1000 400 20 20 10 3 - - 350 300 1.0~10-~ 1.0 x 10-d 2.59~10-~ 7.06 x 1O-6 156 137 0.288 0.181 -0.312 -0.348 

i 3200 1000 20 10 2 3 2.5 1.5 320 600 6.2 1.0 x x 1O-4 1O-4 1.49 1.45 x x 10-S 1om4 305 162 0.185 0.095 -0.372 - 0.407 
5000 10 3 3.0 800 7.2 x 1O-4 1.78 x 1O-4 396 0.08 1 -0.415 

10000 10 5 4.0 1500 5.0 x 10-d 1.10 x 10-b 729 0.075 - 0.409 

In Fig. 9c the u-velocity obtained for Re = 1000 using (3.4) shows excellent 
agreement with [25]. The u-velocity profiles obtained from using the 40 x40 
stretched grids are presented for Re = 1000 - 10,000 in Fig. 9c-f. A kink in the 
velocity profile is observed near the upper wall (i.e., y = 1) for very high Re (e.g., 
5000 and 10,000). This would probably be unstable in the presence of small distur- 
bances. 

Each calculation has been done starting with an initial velocity field (i.e., II at 
t =0) which is zero everywhere. Run conditions, convergence, CPU time, and 
others are listed in Table I, in which urnax and y,,, denote respectively the 
maximum velocity of u and the corresponding y value near the bottom wall. Due to 
grid clustering near the wall, the representative velocity, q, is different from the 
value which is optimum for a uniform grid and the 6 values appearing in Table I 
may not be optimum. 

4. CONCLUSION AND RECOMMENDATIONS 

The present time marching finite-difference method using artificial compressibility 
has been applied to incompressible fluid flow through a channel and in a highly 
recirculating region. With a staggered grid and velocity-pressure couplings, the 
present central-difference scheme is stable and accurate in calculations of fluid flow 
through channels and in cavity for a wide range of Reynolds numbers without 
adding artilicial damping terms. The present method is also stable for large cell 
Reynods numbers. For example, the cell Reynolds number appearing in the 
calculation of the driven cavity flow at Re = 10000 is as high as about 100. No 
spatial oscillations in the flow variables are observed for high Re flow calculations. 

It is recommended that a value for the artificial compressibility, 6, be chosen as 
in (2.16) by proper selection of q through the understanding of the flow of current 
interest together with a consideration of grid arrangement. For optimum values of 6 
and time step, however, further investigation including the viscous effects is needed. 
As for the Courant number, selecting too large a value should be avoided, since the 
At2 term in (2.8) affects our scheme. 
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APPENDIX 

The f&&i, wij, and (Rp), in (2.9) and (2.10) are written in the finite- 
form for each cell as 

_ (u,f)2-(u;)2~vu+4XJN-v;4XJS 
AX AY 

m Vi+~j+V~~~j-2vi,+Vij+~+v~_~-220~ 

> 
ij+ 1 -Pij 

At AX2 Ay2 - Ay 

u~*vvE-uu,-vvw (v,‘)2-(v;)2 - 
Ax - Ay 

where UUN= (ug+ u~+~)/Z, UUS= (u,+ uiie1)/2, VVE= jug+ v~+~~)/Z, a 

VI/W= (vii + vi- ,)/2. At the cell whose boundary lies on the wall, 

d2U ‘t(Ui2/3 - Uil) 
for j= 1, 4(%&l/3 - %.?I 

a;12= Ay2 Ay2 
for j=J. 

For the y-sweep, (2.10) can be rewritten as 

A Au& 1 + B Av$ + C Au;+ 1 + tY(A& 1 - Ap,T) = ( 

ff (Au; - Au&,) + Ap; = (&I)+ 

where A = - (t,/2) vL: - t;, B = 1 + (t,/2)(v; - v;) + 2t;, 
Subtracting (A-2) for j =j + 1 from (A-2) for j = j gives 

c = (tJ2) v: - t;. 

AP$+ I - AP,T = (RP),+ 1 - (Rp&f (Au;,, i-Au;_ 1 - 2 Au;). 

Then, (A-l) becomes 

= (Rv),- t,WW,+ 1 - (RP),). 

Equation (A-l’) can be solved forj= I,..., J- 1 (Au:= 0 since u is given at the wali, 
i.e., j = J) using a tridiagonal matrix solver, then the Ap$ in (A-2) is obtained sub- 
sequently. 
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For the x-sweep, (2.12) is rewritten as 

DA+,:. + E Au;+ l+ F Au;=; + t,(Ap;;,:. - Ap;+ ‘) = Au; (A-3 1 

(A-4) 

where D, E, and Fare the first entries of the first, second, and third square matrices 
in (2.12). At i= I, Ap;Tb-- Ap;” in (A-3) becomes -Ap$+’ because thep, which is 
prt ij there, is given at the right-side boundary of the u-cell. Strictly speaking, p is 
not given fixed but varies with time about a fixed value, which is zero in the present 
study. The value of p,+ lj is evaluated at the nth time step using (3.1). As solution 
approaches steady-state pI+ y becomes independent of time. For i= I, all of the 
convective terms are extrapolated to be u,’ = urj + (1.4~~~ uIP ,)/2, v: = VVE = 
vii + (a0 - vl- ,)/2, and v; = vii-i + (v,.- i - v,- ii- ,)/2. The diffusion terms are 
approximated as 

ah u,-zj+uo-2~,_lj a% v [-zj+ Vf~-2V,-,j 
g= Ax* ’ Q= Ax2 

As was the case with (A-l’), the above equation (A-3) can be written as 

(D-5) Au;T$+(E+~) A24;+l+(F-$) A~r=,:=d~~-t,(dp~+,,-Adpd). 

(A-3’) 

To observe the structure of the system (A-l’) and (A-3’), it is assumed that 
v+ =v- =v Uf =u- = U, and that they are positive. If the cell Reynolds numbers, 
Re v Af; and Ri u Ai, are less than 2, (A-l’) and (A-3’) are diagonal dominant. For 
Re v Ay and Re u Ax much greater than 2 we can write (A-l’) and (A-3’) as 

(- 2 ‘6’) rJ 1 ( ‘;) II ( 2 ;) v-2 A& + 1+-1: Au?-+ fii,-2 Av,T+, =RHSof(A-1’) (A-5) 

For (tJ2) v < t;/J and (tJ2) u < tz/ls, (A-5) and (A-6) are diagonal dominant. In the 
case where (tJ2) v and (tJ2) u are larger than $18 and t:./d, respectively, we have 
the following for the diagonal dominance: 

8 
u2, v2 <-. 

6 
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Recalling that 0 is chosen according to (2.16) we can conclude that the system 
(A-l’) and (A-3’) are always diagonal dominant in the practical calculation. 
However, the system (2.9) and (2.11) have some limitations on the time step to 
guarantee the diagonal dominance for the cell Reynolds numbers larger than 2 as 

I‘ At 1 u At 1 
xc 1 -2(Rerdj.) -” n.u< 1 -2(Rez!nx)- ’ 

The above arguments about the diagonal dominance arc confined only to the par- 
:ial step, which is cithcr an intermediate step or a correction step, denoted by 
superscripts * and II + 1, respectively. To complete a time advancement from 17 dr to 
07 + 1) dr, however. the intermediate step (2.9) and (A-l’) are followed by the 
correction step (A-O’) and (2.1 I ). This may allow a large ceil Reynolds number 
without deteriorating the present central difference numerical schcmc. To confirm 
this in an affirmative way a rigorous stability analysis of the velocity -pressure 
coupled system is needed. which is not carried out in this paper. 
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